Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.172
Filtrar
1.
Drug Metab Pharmacokinet ; 56: 101008, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38663183

RESUMEN

We aimed at predicting the drug-drug interaction (DDI) risk of P-glycoprotein (P-gp) substrates by using P-gp expressing LLC-PK1 cells and its knockout mice (KO). The area under the curve (AUC) of 16 marketed drugs and plasma concentration (Cplasma) of 207 screening compounds, with corrected efflux ratio (CER) ≥ 2, were compared between P-gp KO mice and wild type mice (WT). At permeability (Papp) ≥ 10 × 10-6 cm/s in parent LLC-PK1 cells, AUC ratios (KO/WT) and Cplasma ratios (KO/WT) of these compounds were within 3-fold. AUC ratios (KO/WT) of clinical P-gp substrates, with human AUC ratios with and without P-gp inhibitor administration ≥2, were higher than 8.7. These observations led us to establish a work-flow of P-gp substrate assessment with the threshold AUC ratio (KO/WT) ≥ 9 leading to a DDI risk of AUC ratio (human) ≥ 2. A screening compound showing high CER (=57.6) was found, but its AUC ratio (KO/WT) was 3.7, had been presumed to be a weak risk and its AUC ratio (human) was 1.2 in a later clinical DDI study. Our proposed workflow should be useful for predicting the DDI risk of P-gp substrates in drug discovery.

2.
Free Radic Res ; : 1-17, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38613520

RESUMEN

It was demonstrated that ginsenosides exert anti-convulsive potentials and interleukin-6 (IL-6) is protective from excitotoxicity induced by kainate (KA), a model of temporal lobe epilepsy. Ginsenosides-mediated mitochondrial recovery is essential for attenuating KA-induced neurotoxicity, however, little is known about the effects of ginsenoside Re (GRe), one of the major ginsenosides. In this study, GRe significantly attenuated KA-induced seizures in mice. KA-induced redox changes were more evident in mitochondrial fraction than in cytosolic fraction in the hippocampus of mice. GRe significantly attenuated KA-induced mitochondrial oxidative stress (i.e. increases in reactive oxygen species, 4-hydroxynonenal, and protein carbonyl) and mitochondrial dysfunction (i.e. the increase in intra-mitochondrial Ca2+ and the decrease in mitochondrial membrane potential). GRe or mitochondrial protectant cyclosporin A restored phospho-signal transducers and activators of transcription 3 (STAT3) and IL-6 levels reduced by KA, and the effects of GRe were reversed by the JAK2 inhibitor AG490 and the mitochondrial toxin 3-nitropropionic acid (3-NP). Thus, we used IL-6 knockout (KO) mice to investigate whether the interaction between STAT3 and IL-6 is involved in the GRe effects. Importantly, KA-induced reduction of manganese superoxide dismutase (SOD-2) levels and neurodegeneration (i.e. astroglial inhibition, microglial activation, and neuronal loss) were more prominent in IL-6 KO than in wild-type (WT) mice. These KA-induced detrimental effects were attenuated by GRe in WT and, unexpectedly, IL-6 KO mice, which were counteracted by AG490 and 3-NP. Our results suggest that GRe attenuates KA-induced neurodegeneration via modulating mitochondrial oxidative burden, mitochondrial dysfunction, and STAT3 signaling in mice.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38657776

RESUMEN

BACKGROUND: Transplantation of human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) has emerged as a promising therapy to treat end-stage heart failure. However, immunogenicity of hiPS-CMs in transplanted patients has not been fully elucidated. Thus, in vivo models are required to estimate immune responses against hiPS-CMs in transplant recipients. METHODS: We transferred human peripheral blood mononuclear cells (hPBMCs) into NOD/Shi-scid IL2rgnull (NOG) MHC class I/II double knockout (NOG-ΔMHC) mice, which were reported to accept hPBMCs without xenogeneic-graft-versus-host disease (xeno-GVHD). Then, hiPS-CM sheets generated from the hiPS cell line 201B7 harboring a luciferase transgene were transplanted into the subcutaneous space of NOG-ΔMHC mice. Graft survival was monitored by bioluminescent images using a Xenogen In Vivo Imaging System. RESULTS: The human immune cells were engrafted for more than three months in NOG-ΔMHC mice without lethal xeno-GVHD. The hiPS-CMs expressed a moderate level of human leukocyte antigen (HLA)-class I, but not HLA-class II, molecules even after interferon-gamma (IFN-γ) stimulation. Consistently, the allogenic IFN-γ-treated hiPS-CMs induced weak CD8+ but not CD4+, T cell responses in vitro. hiPS-CM sheets disappeared approximately 17-24 days after transplantation in hPBMC-transferred NOG-ΔMHC mice, and CD8+ T cell depletion significantly prolonged graft survival, similar to what was observed following tacrolimus treatment. CONCLUSION: hiPS-CMs are less immunogenic in vitro but induce sufficient CD8+ T cell-mediated immune responses for graft rejection in vivo.

4.
Front Physiol ; 15: 1338476, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628440

RESUMEN

Introduction: Erythropoietin (EPO) acts primarily in regulating red blood cell production mediated by high EPO receptor (EPOR) expression in erythroid progenitor cells. EPO activity in non-erythroid tissue is evident in mice with EPOR restricted to erythroid tissues (ΔEPORE) that become obese, glucose-intolerant, and insulin-resistant. In animal models, nitric oxide synthase (NOS) contributes to EPO activities including erythropoiesis, neuroprotection, and cardioprotection against ischemia-reperfusion injury. However, we found that extended EPO treatment to increase hematocrit compromised heart function, while the loss of neuronal NOS (nNOS) was protective against the deleterious activity of EPO to promote heart failure. Methods: Wild-type (WT) mice, ΔEPORE mice, and nNOS-knockout mice (nNOS-/-) were placed on a high-fat diet to match the ΔEPORE obese phenotype and were treated with EPO for 3 weeks. Hematocrit and metabolic response to EPO treatment were monitored. Cardiac function was assessed by echocardiography and ultrasonography. Results: ΔEPORE mice showed a decrease in the left ventricular outflow tract (LVOT) peak velocity, ejection fraction, and fractional shortening, showing that endogenous non-erythroid EPO response is protective for heart function. EPO treatment increased hematocrit in all mice and decreased fat mass in male WT, demonstrating that EPO regulation of fat mass requires non-erythroid EPOR. EPO treatment also compromised heart function in WT mice, and decreased the pulmonary artery peak velocity (PA peak velocity), LVOT peak velocity, ejection fraction, and fractional shortening, but it had minimal effect in further reducing the heart function in ΔEPORE mice, indicating that the adverse effect of EPO on heart function is not related to EPO-stimulated erythropoiesis. ΔEPORE mice had increased expression of heart failure-associated genes, hypertrophic cardiomyopathy-related genes, and sarcomeric genes that were also elevated with EPO treatment in WT mice. Male and female nNOS-/- mice were protected against diet-induced obesity. EPO treatment in nNOS-/- mice increased the hematocrit that tended to be lower than WT mice and decreased the PA peak velocity but did not affect the LVOT peak velocity, ejection fraction, and fractional shortening, suggesting that nNOS is required for the adverse effect of EPO treatment on heart function in WT mice. EPO treatment did not change expression of heart failure-associated gene expression in nNOS-/- mice. Discussion: Endogenous EPO has a protective effect on heart function. With EPO administration, in contrast to the protective effect to the cardiac injury of acute EPO treatment, extended EPO treatment to increase hematocrit in WT mice adversely affected the heart function with a corresponding increase in expression of heart failure-associated genes. This EPO activity was independent of EPO-stimulated erythropoiesis and required EPOR in non-erythroid tissue and nNOS activity, while nNOS-/- mice were protected from the EPO-associated adverse effect on heart function. These data provide evidence that nNOS contributes to the negative impact on the heart function of high-dose EPO treatment for anemia.

5.
Brain ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38447953

RESUMEN

Vincristine-induced peripheral neuropathy (VIPN) is a common side effect of vincristine treatment, which is accompanied by pain and can be dose-limiting. The molecular mechanisms that underlie vincristine-induced pain are not well understood. We have established an animal model to investigate pathophysiological mechanisms of vincristine induced pain. Our previous studies have shown that the tetrodotoxin-sensitive (TTX-S) voltage-gated sodium channel NaV1.6 in medium-diameter dorsal root ganglion (DRG) neurons contributes to the maintenance of vincristine-induced allodynia. In this study, we investigated the effects of vincristine administration on excitability in small-diameter DRG neurons and whether the tetrodotoxin-resistant (TTX-R) NaV1.8 channels contribute to mechanical allodynia. Current-clamp recordings demonstrated that small DRG neurons become hyper-excitable following vincristine treatment, with both reduced current threshold and increased firing frequency. Using voltage-clamp recordings in small DRG neurons we now show an increase in TTX-R current density and a -7.3 mV hyperpolarizing shift in V1/2 of activation of NaV1.8 channels in vincristine-treated animals, which likely contributes to the hyperexcitability that we observed in these neurons. Notably, vincristine treatment did not enhance excitability of small DRG neurons from NaV1.8 knockout mice, and the development of mechanical allodynia was delayed but not abrogated in these mice. Together, our data suggest that sodium channel NaV1.8 in small DRG neurons contributes to the development of vincristine-induced mechanical allodynia.

6.
J Endocrinol ; 261(2)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38451877

RESUMEN

Glucocorticoids are steroid hormones, secreted by the adrenals to regulate a range of metabolic, immunologic, and homeostatic functions. Due to their potent anti-inflammatory effects, synthetic glucocorticoids are widely used to treat inflammatory disorders. However, their use especially at high doses and over the long-term is associated with several unwanted side effects that compromises their intended use (e.g. glucocorticoid-induced osteoporosis and/or diabetes, myopathy, and skin atrophy). Both endogenous and synthetic glucocorticoids exert their effects through the glucocorticoid receptor, a transcription factor present in nearly all nucleated cells. Glucocorticoid receptor knockout mouse models have proved to be valuable tools in understanding how glucocorticoids contribute to skeletal health and disease. These models, described in this review, have helped to establish that the effects of glucocorticoids on the skeleton are multifaceted, cell specific and concentration dependent. Intriguingly, while endogenous glucocorticoids are essential for bone formation, high-dose exogenous glucocorticoids may induce bone loss. Additionally, the actions of endogenous glucocorticoids vary greatly depending on the disease microenvironment. For example, endogenous glucocorticoids have predominately beneficial anti-inflammatory effects in rheumatoid arthritis, but detrimental actions in osteoarthritis by driving cartilage loss and abnormal bone formation. Studies in tissue-specific knockout models provide important insights that will aid the development of new glucocorticoid therapeutics that can specifically target certain cell types to minimise unwanted effects from current glucocorticoid therapy.


Asunto(s)
Osteoporosis , Receptores de Glucocorticoides , Animales , Ratones , Antiinflamatorios , Glucocorticoides/efectos adversos , Ratones Noqueados , Osteoporosis/inducido químicamente , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
7.
Cell Mol Life Sci ; 81(1): 118, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38448737

RESUMEN

Tektins are microtubule inner proteins (MIPs) and localize at the inside lumen of doublet microtubules (DMTs) of cilia/flagella. TEKTIP1, a newly identified protein by cryo-electron microscopy (cryo-EM), is proposed to be localized at the center of the tektin bundle and hypothesized to recruit tektins or stabilize the bundle. However, the physiological role of TEKTIP1 is unknown. In this study, we generated Tektip1-knockout (Tektip1-/-) mice and showed that they were male subfertile primarily due to reduced sperm motility. A high percentage of sperm from Tektip1-/- mice showed moderately disorganized axoneme structures and abnormal flagellar waveforms. TEKTIP1 predominately interacted with TEKT3 among tektins. Loss of TEKTIP1 partially disturbed the organization of tektin bundle by mainly affecting the native status of TEKT3 and its interaction with other tektins. Collectively, our study reveals the physiological role and potential molecular mechanism of TEKTIP1 in axonemal structure and sperm motility, highlights the importance of MIPs in stabilizing DMTs, and suggests a potential relevance of TEKTIP1 deficiency to human asthenospermia. Tektip1-/- mice will be an excellent animal model to study the DMT organization of sperm flagella using cryo-EM in future.


Asunto(s)
Axonema , Proteínas de Microtúbulos , Semen , Humanos , Masculino , Animales , Ratones , Femenino , Microscopía por Crioelectrón , Motilidad Espermática , Espermatozoides , Flagelos
8.
Artículo en Inglés | MEDLINE | ID: mdl-38502778

RESUMEN

Background: The cannabinoid receptor 2 (CB2R), a cannabinoid receptor primarily expressed in immune cells, has been found in the brain, particularly in the hippocampus, where it plays crucial roles in modulating various neural functions, including synaptic plasticity, neuroprotection, neurogenesis, anxiety and stress responses, and neuroinflammation. Despite this growing understanding, the intricate electrophysiological characteristics of hippocampal neurons in CB2R knockout (CB2R KO) mice remain elusive. Aim and Methods: This study aimed to comprehensively assess the electrophysiological traits of hippocampal synaptic and network functions in CB2R KO mice. The focus was on aspects such as synaptic transmission, short- and long-term synaptic plasticity, and neural network synchrony (theta oscillations). Results: Our findings unveiled multiple functional traits in these CB2R KO mice, notably elevated synaptic transmission in hippocampal CA1 neurons, decreased both synaptic short-term plasticity (paired-pulse facilitation) and long-term potentiation (LTP), and impaired neural network synchronization. Conclusion: In essence, this study yields insightful revelations about the influence of CB2Rs on hippocampal neural functions. By illuminating the electrophysiological modifications in CB2R KO mice, our research enriches the comprehension of CB2R involvement in hippocampal function. Such insights could hold implications for advancing our understanding of the neural mechanisms under the influence of CB2Rs within the brain.

9.
Biomarkers ; 29(2): 90-99, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38362802

RESUMEN

INTRODUCTION: tRNA-derived fragments (tRFs) play an important role in immune responses. To clarify the role of tRFs in autoimmunity we studied circulating tRF-levels in patients with rheumatoid arthritis (RA) and psoriatic arthritis (PsA), and in a murine model for arthritis. MATERIAL AND METHODS: Circulating tRF-levels were quantified by miR-Q RT-qPCR. tRNA processing and modification enzyme expression was analysed by RT-qPCR and public transcriptomics data. RESULTS: Significant reduction (up to 3-fold on average) of tRF-levels derived from tRNA-Gly-GCC,CCC, tRNA-Glu-CTC and tRNA-Val-CAC,AAC was observed in RA patients, whereas tRNA-Glu-CTC and tRNA-Val-CAC,AAC tRFs were found at significantly higher levels (up to 3-fold on average) in PsA patients, compared to healthy controls. Also in arthritic IL1Ra-KO mice reduced levels of tRNA-Glu-CTC fragments were seen. The expression of NSUN2, a methyltransferase catalysing tRNA methylation, was increased in RA-peripheral blood mononuclear cells (PBMCs) compared to PsA, but this is not consistently supported by public transcriptomics data. DISCUSSION: The observed changes of specific tRF-levels may be involved in the immune responses in RA and PsA and may be applicable as new biomarkers. CONCLUSION: Circulating tRF-levels are decreased in RA and increased in PsA and this may, at least in part, be mediated by methylation changes.


Asunto(s)
Artritis Psoriásica , Artritis Reumatoide , Humanos , Animales , Ratones , Artritis Psoriásica/genética , Leucocitos Mononucleares/metabolismo , ARN de Transferencia/genética , Biomarcadores/metabolismo
10.
Cell Biosci ; 14(1): 28, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395975

RESUMEN

BACKGROUND: PRAME constitutes one of the largest multi-copy gene families in Eutherians, encoding cancer-testis antigens (CTAs) with leucine-rich repeats (LRR) domains, highly expressed in cancer cells and gametogenic germ cells. This study aims to elucidate genetic interactions between two members, Pramex1 and Pramel1, in the mouse Prame family during gametogenesis using a gene knockout approach. RESULT: Single-gene knockout (sKO) of either Pramex1 or Pramel1 resulted in approximately 7% of abnormal seminiferous tubules, characterized by a Sertoli-cell only (SCO) phenotype, impacting sperm count and fecundity significantly. Remarkably, sKO female mice displayed normal reproductive functions. In contrast, Pramex1/Pramel1 double knockout (dKO) mice exhibited reduced fecundity in both sexes. In dKO females, ovarian primary follicle count decreased by 50% compared to sKO and WT mice, correlating with a 50% fecundity decrease. This suggested compensatory roles during oogenesis in Pramex1 or Pramel1 sKO females. Conversely, dKO males showed an 18% frequency of SCO tubules, increased apoptotic germ cells, and decreased undifferentiated spermatogonia compared to sKO and WT testes. Western blot analysis with PRAMEX1- or PRAMEL1-specific antibodies on sKO testes revealed compensatory upregulation of each protein (30-50%) in response to the other gene's deletion. Double KO males exhibited more severe defects in sperm count and litter size, surpassing Pramex1 and Pramel1 sKO accumulative effects, indicating a synergistic enhancement interaction during spermatogenesis. Additional experiments administering trans-retinoic acid (RA) and its inhibitor (WIN18,446) in sKO, dKO, and WT mice suggested that PRAMEX1 and PRAMEL1 synergistically repress the RA signaling pathway during spermatogenesis. CONCLUSION: Data from sKO and dKO mice unveil a synergistic interaction via the RA signaling pathway between Pramex1 and Pramel1 genes during gametogenesis. This discovery sets the stage for investigating interactions among other members within the Prame family, advancing our understanding of multi-copy gene families involved in germ cell formation and function.

11.
Immunology ; 172(1): 109-126, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38316548

RESUMEN

Dendritic cells (DCs) are the most significant antigen presenting cells of the immune system, critical for the activation of naïve T cells. The pathways controlling DC development, maturation, and effector function therefore require precise regulation to allow for an effective induction of adaptive immune response. MYSM1 is a chromatin binding deubiquitinase (DUB) and an activator of gene expression via its catalytic activity for monoubiquitinated histone H2A (H2A-K119ub), which is a highly abundant repressive epigenetic mark. MYSM1 is an important regulator of haematopoiesis in mouse and human, and a systemic constitutive loss of Mysm1 in mice results in a depletion of many haematopoietic progenitors, including DC precursors, with the downstream loss of most DC lineage cells. However, the roles of MYSM1 at the later checkpoints in DC development, maturation, activation, and effector function at present remain unknown. In the current work, using a range of novel mouse models (Mysm1flCreERT2, Mysm1flCD11c-cre, Mysm1DN), we further the understanding of MYSM1 functions in the DC lineage: assessing the requirement for MYSM1 in DC development independently of other complex developmental phenotypes, exploring its role at the later checkpoints in DC maintenance and activation in response to microbial stimulation, and testing the requirement for the DUB catalytic activity of MYSM1 in these processes. Surprisingly, we demonstrate that MYSM1 expression and catalytic activity in DCs are dispensable for the maintenance of DC numbers in vivo or for DC activation in response to microbial stimulation. In contrast, MYSM1 acts via its DUB catalytic activity specifically in haematopoietic progenitors to allow normal DC lineage development, and its loss results not only in a severe DC depletion but also in the production of functionally altered DCs, with a dysregulation of many housekeeping transcriptional programs and significantly altered responses to microbial stimulation.


Asunto(s)
Transactivadores , Proteasas Ubiquitina-Específicas , Animales , Humanos , Ratones , Diferenciación Celular , Cromatina/genética , Células Dendríticas/metabolismo , Endopeptidasas/genética , Endopeptidasas/metabolismo , Histonas/metabolismo , Ratones Noqueados , Transactivadores/genética , Transactivadores/metabolismo , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo
12.
Artículo en Inglés | MEDLINE | ID: mdl-38409475

RESUMEN

The mouse aortic transplantation model is a valuable tool for investigating the mechanisms of atherosclerosis regression, but few laboratories can generate it due to the operation difficulty, especially for the style of end-to-side anastomosis, which facilitates syngeneic heterotopic transplanting a plaque-rich aortic arch into the abdominal aorta. Here we provide a modified protocol for generating this allograft model, which is capable of overcoming several critical surgical challenges such as separating a longer abdominal aorta segment, reducing bleeding and thrombosis, optimizing aortotomy, and improving end-to-side anastomosis to guarantee a potent graft. By transplanting plaque-rich aortic arches into the abdominal aorta of wildtype mice, a high operation success rate (over 90%) was noted with aortic clamping time under 60 min, the graft potency was satisfactory evidenced by examinations of micro-CT, ultrasound, and lower limb blood flow measurement, while a significant atherosclerosis regression was observed in the grafts at 1 week after transplantation.

13.
Biol Reprod ; 110(4): 750-760, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38217862

RESUMEN

Sperm proteins undergo post-translational modifications during sperm transit through the epididymis to acquire fertilizing ability. We previously reported that the genomic region coding Pate family genes is key to the proteolytic processing of the sperm membrane protein ADAM3 and male fertility. This region contains nine Pate family genes (Pate5-13), and two protein-coding genes (Gm27235 and Gm5916), with a domain structure similar to Pate family genes. Therefore, in this study, we aimed to identify key factors by narrowing the genomic region. We generated three knockout (KO) mouse lines using CRISPR/Cas9: single KO mice of Pate10 expressed in the caput epididymis; deletion KO mice of six caput epididymis-enriched genes (Pate5-7, 13, Gm27235, and Gm5916) (Pate7-Gm5916 KO); and deletion KO mice of four genes expressed in the placenta and epididymis (Pate8, 9, 11, and 12) (Pate8-12 KO). We observed that the fertility of only Pate7-Gm5916 KO males was reduced, whereas the rest remained unaffected. Furthermore, when the caput epididymis-enriched genes, Pate8 and Pate10 remained in Pate7-Gm5916 KO mice were independently deleted, both KO males displayed more severe subfertility due to a decrease in mature ADAM3 and a defect in sperm migration to the oviduct. Thus, our data showed that multiple caput epididymis-enriched genes within the region coding Pate5-13 cooperatively function to ensure male fertility in mice.


Asunto(s)
Semen , Espermatozoides , Embarazo , Femenino , Masculino , Ratones , Animales , Espermatozoides/metabolismo , Epidídimo/metabolismo , Fertilidad/genética , Ratones Noqueados , Genómica
14.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38256229

RESUMEN

Tumor necrosis factor alpha (TNF-α) is a cytokine that is responsible for many processes associated with immune response and inflammation. It is involved in the development of an antiviral response to many virus infections. This factor was shown to be activated in influenza A virus infection, which enhances production of other cytokines. The overexpression of these cytokines can lead to a cytokine storm. To study the role of TNF-α in the development of pathologies associated with viral infection, we generated a Tnfa knockout mouse strain. We demonstrated that these mice were characterized by a significant increase in the number of viral genomes compared to that in the parental strain, but the amount of live virus did not differ. A histopathology of the lungs in the genetically modified animals was significantly lower in terms of interalveolar septal infiltration. The generated model may be used to further study pathological processes in viral infections.


Asunto(s)
Virus de la Influenza A , Infecciones por Orthomyxoviridae , Factor de Necrosis Tumoral alfa , Animales , Ratones , Citocinas/genética , Ratones Noqueados , Factor de Necrosis Tumoral alfa/genética , Infecciones por Orthomyxoviridae/patología
15.
Artículo en Inglés | MEDLINE | ID: mdl-38199489

RESUMEN

Orphanin FQ/nociceptin (OFQ/N), the endogenous ligand of the nociceptin opioid receptor (NOP) has been shown to block cocaine-induced locomotor sensitization in mice and rats, and also reverses this phenomenon when injected intracerebroventricularly in animals with an established sensitized response. In the present study, we determined whether small-molecule NOP agonists would recapitulate this effect after systemic administration. Male C57BL/6 mice treated with cocaine (15 mg/kg) on days 1-3 and showed locomotor sensitization to the same dose of cocaine on day 8 were injected with vehicle or one of the two NOP agonists (AT-202 and AT-524) (but not cocaine) on days 9-11. On day 15, locomotor sensitization was assessed after a cocaine challenge (15 mg/kg). Subchronic administration of the two NOP agonists to sensitized mice significantly decreased the sensitized response on day 15. In a separate experiment conducted in male and female mice lacking NOP and their wildtype littermates, AT-524 reversed sensitization in male wildtype but not in mice lacking NOP. Further, co-administration of the NOP agonist with cocaine for three days on days 16-18 prevented the development of locomotor sensitization from this cocaine treatment in wild-type but not in NOP knockout mice. However, none of these effects of the NOP agonist was observed in female mice. Together, these results suggest that subchronic repeated administration of small-molecule NOP agonists may reverse adaptive behavioral changes associated with repeated intermittent cocaine treatment in male but not female mice.


Asunto(s)
Cocaína , Receptores Opioides , Ratas , Ratones , Masculino , Femenino , Animales , Ratones Endogámicos C57BL , Receptores Opioides/genética , Péptidos Opioides , 60620 , Receptor de Nociceptina , Cocaína/farmacología , Ratones Noqueados
16.
Environ Pollut ; 344: 123314, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38218542

RESUMEN

Despite their use as substitutes for perfluorooctanoic acid, the potential toxicities of hexafluoropropylene oxide dimer acid (HFPO-DA, commercial name: GenX) and its analogs (PFDMOHxA, PFDMO2HpA, and PFDMO2OA) remain poorly understood. To assess the hepatotoxicity of these chemicals on females, each chemical was orally administered to female C57BL/6 mice at the dosage of 0.5 mg/kg/d for 28 d. The contribution of peroxisome proliferator-activated receptors (PPARα and γ) and other nuclear receptors involving in these toxic effects of GenX and its analogs were identified by employing two PPAR knockout mice (PPARα-/- and PPARγΔHep) in this study. Results showed that the hepatotoxicity of these chemicals increased in the order of GenX < PFDMOHxA < PFDMO2HpA < PFDMO2OA. The increases of relative liver weight and liver injury markers were significantly much lower in PPARα-/- mice than in PPARα+/+ mice after GenX analog exposure, while no significant differences were observed between PPARγΔHep and its corresponding wildtype groups (PPARγF/F mice), indicating that GenX analog induce hepatotoxicity mainly via PPARα instead of PPARγ. The PPARα-dependent complement pathways were inhibited in PFDMO2HpA and PFDMO2OA exposed PPARα+/+ mice, which might be responsible for the observed liver inflammation. In PPARα-/- mice, hepatomegaly and increased liver lipid content were observed in PFDMO2HpA and PFDMO2OA treated groups. The activated pregnane X receptor (PXR) and constitutive activated receptor (CAR) pathways in the liver of PPARα-/- mice, which were highlighted by bioinformatics analysis, provided a reasonable explanation for hepatomegaly in the absence of PPARα. Our results indicate that GenX analogs could induce more serious hepatotoxicity than GenX whether there is a PPARα receptor or not. These chemicals, especially PFDMO2HpA and PFDMO2OA, may not be appropriate PFOA alternatives.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Fluorocarburos , Propionatos , Ratones , Femenino , Animales , Hepatomegalia/inducido químicamente , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gamma/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Fluorocarburos/toxicidad , Fluorocarburos/metabolismo , Ratones Noqueados , Enfermedad Hepática Inducida por Sustancias y Drogas/genética
17.
Hypertension ; 81(1): 126-137, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37909221

RESUMEN

BACKGROUND: Kir4.2 and Kir4.1 play a role in regulating membrane transport in the proximal tubule (PT) and in the distal-convoluted-tubule (DCT), respectively. METHODS: We generated kidney-tubule-specific-AT1aR-knockout (Ks-AT1aR-KO) mice to examine whether renal AT1aR regulates Kir4.2 and Kir4.1. RESULTS: Ks-AT1aR-KO mice had a lower systolic blood pressure than Agtr1aflox/flox (control) mice. Ks-AT1aR-KO mice had a lower expression of NHE3 (Na+/H+-exchanger 3) and Kir4.2, a major Kir-channel in PT, than Agtr1aflox/flox mice. Whole-cell recording also demonstrated that the membrane potential in PT of Ks-AT1aR-KO mice was lesser negative than Agtr1aflox/flox mice. The expression of Kir4.1 and Kir5.1, Kir4.1/Kir5.1-mediated K+ currents of DCT and DCT membrane potential in Ks-AT1aR-KO mice, were similar to Agtr1aflox/flox mice. However, angiotensin II perfusion for 7 days hyperpolarized the membrane potential in PT and DCT of the control mice but not in Ks-AT1aR-KO mice, while angiotensin II perfusion did not change the expression of Kir4.1, Kir4.2, and Kir5.1. Deletion of AT1aR did not significantly affect the expression of αENaC (epithelial Na+ channel) and ßENaC but increased cleaved γENaC expression. Patch-clamp experiments demonstrated that deletion of AT1aR increased amiloride-sensitive Na+-currents in the cortical-collecting duct but not in late-DCT. However, tertiapin-Q sensitive renal outer medullary potassium channel currents were similar in both genotypes. CONCLUSIONS: AT1aR determines the baseline membrane potential of PT by controlling Kir4.2 expression/activity but AT1aR is not required for determining the baseline membrane potential of the DCT and Kir4.1/Kir5.1 activity/expression. However, AT1aR is required for angiotensin II-induced hyperpolarization of basolateral membrane of PT and DCT. Deletion of AT1aR had no effect on baseline renal outer medullary potassium channel activity but increased ENaC activity in the CCD.


Asunto(s)
Canales de Potasio de Rectificación Interna , Receptor de Angiotensina Tipo 1 , Animales , Ratones , Angiotensina II/farmacología , Angiotensina II/metabolismo , Túbulos Renales/metabolismo , Túbulos Renales Distales/metabolismo , Ratones Noqueados , Potasio/metabolismo , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo , Sodio/metabolismo , Canales Epiteliales de Sodio
18.
J Biochem ; 175(2): 195-204, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-37947138

RESUMEN

C-C chemokine receptor type 2 (CCR2) is the receptor for C-C motif chemokine 2 (CCL2) and is associated with various inflammatory diseases and cancer metastasis. Although many inhibitors for CCR2 have been developed, it remains unresolved which inhibitors are the most effective in the clinical setting. In the present study, we compared 10 existing human CCR2 antagonists in a calcium influx assay using human monocytic leukemia cells. Among them, MK0812 was found to be the most potent inhibitor of human CCR2. Furthermore, we generated a human CCR2B knock-in mouse model to test the efficacy of MK0812 against a lung metastasis model of breast cancer. Oral administration of MK0812 to humanized mice did indeed reduce the number of monocytic myeloid-derived suppressor cells and the rate of lung metastasis. These results suggest that MK0812 is the most promising candidate among the commercially available CCR2 inhibitors. We propose that combining these two screening methods may provide an excellent experimental method for identifying effective drugs that inhibit human CCR2.


Asunto(s)
Neoplasias Pulmonares , Receptores CCR2 , Humanos , Animales , Ratones , Quimiocina CCL2 , Monocitos , Modelos Animales de Enfermedad , Neoplasias Pulmonares/tratamiento farmacológico
19.
Peptides ; 171: 171118, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38012983

RESUMEN

Acute respiratory distress syndrome (ARDS) is a life-threatening lung condition characterized by widespread inflammation and pulmonary edema. Adrenomedullin (AM), a bioactive peptide with various functions, is expected to be applied in treating ARDS. Its functions are regulated primarily by two receptor activity-modifying proteins, RAMP2 and RAMP3, which bind to the AM receptor calcitonin receptor-like receptor (CLR). However, the roles of RAMP2 and RAMP3 in ARDS remain unclear. We generated a mouse model of ARDS via intratracheal administration of lipopolysaccharide (LPS), and analyzed the pathophysiological significance of RAMP2 and RAMP3. RAMP2 expression declined with LPS administration, whereas RAMP3 expression increased at low doses and decreased at high doses of LPS. After LPS administration, drug-inducible vascular endothelial cell-specific RAMP2 knockout mice (DI-E-RAMP2-/-) showed reduced survival, increased lung weight, and had more apoptotic cells in the lungs. DI-E-RAMP2-/- mice exhibited reduced expression of Epac1 (which regulates vascular endothelial cell barrier function), while RAMP3 was upregulated in compensation. In contrast, after LPS administration, RAMP3-/- mice showed no significant changes in survival, lung weight, or lung pathology, although they exhibited significant downregulation of iNOS, TNF-α, and NLRP3 during the later stages of inflammation. Based on transcriptomic analysis, RAMP2 contributed more to the circulation-regulating effects of AM, whereas RAMP3 contributed more to its inflammation-regulating effects. These findings indicate that, while both RAMP2 and RAMP3 participate in ARDS pathogenesis, their functions differ distinctly. Further elucidation of the pathophysiological significance and functional differences between RAMP2 and RAMP3 is critical for the future therapeutic application of AM in ARDS.


Asunto(s)
Adrenomedulina , Síndrome de Dificultad Respiratoria , Animales , Ratones , Adrenomedulina/genética , Adrenomedulina/metabolismo , Inflamación , Lipopolisacáridos , Proteína 2 Modificadora de la Actividad de Receptores/genética , Proteína 2 Modificadora de la Actividad de Receptores/metabolismo , Proteína 3 Modificadora de la Actividad de Receptores/genética , Proteína 3 Modificadora de la Actividad de Receptores/metabolismo , Proteínas Modificadoras de la Actividad de Receptores/genética , Receptores de Adrenomedulina/genética , Receptores de Adrenomedulina/metabolismo , Síndrome de Dificultad Respiratoria/genética
20.
Neuropharmacology ; 245: 109774, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37923121

RESUMEN

There are no approved pharmacotherapies for fragile X syndrome (FXS), a rare neurodevelopmental disorder caused by a mutation in the FMR1 promoter region that leads to various symptoms, including intellectual disability and auditory hypersensitivity. The gene that encodes inhibitory serotonin 1A receptors (5-HT1ARs) is differentially expressed in embryonic brain tissue from individuals with FXS, and 5-HT1ARs are highly expressed in neural systems that are disordered in FXS, providing a rationale to focus on 5-HT1ARs as targets to treat symptoms of FXS. We examined agonist-labeled 5-HT1AR densities in male and female Fmr1 knockout mice and found no differences in whole-brain 5-HT1AR expression in adult control compared to Fmr1 knockout mice. However, juvenile Fmr1 knockout mice had lower whole-brain 5-HT1AR expression than age-matched controls. Consistent with these results, juvenile Fmr1 knockout mice showed reduced behavioral responses elicited by the 5-HT1AR agonist (R)-8-OH-DPAT, effects blocked by the selective 5-HT1AR antagonist, WAY-100635. Also, treatment with the selective 5-HT1AR agonist, NLX-112, dose-dependently prevented audiogenic seizures (AGS) in juvenile Fmr1 knockout mice, an effect reversed by WAY-100635. Suggestive of a potential role for 5-HT1ARs in regulating AGS, compared to males, female Fmr1 knockout mice had a lower prevalence of AGS and higher expression of antagonist-labeled 5-HT1ARs in the inferior colliculus and auditory cortex. These results provide preclinical support that 5-HT1AR agonists may be therapeutic for young individuals with FXS hypersensitive to auditory stimuli.


Asunto(s)
Epilepsia Refleja , Síndrome del Cromosoma X Frágil , Colículos Inferiores , Animales , Femenino , Masculino , Ratones , Proteína del Retraso Mental del Síndrome del Cromosoma X Frágil/genética , Proteína del Retraso Mental del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Colículos Inferiores/metabolismo , Ratones Noqueados , Receptor de Serotonina 5-HT1A/genética , Receptor de Serotonina 5-HT1A/metabolismo , Serotonina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...